Turboelectric Uncertainty Quantification and Error Estimation in Numerical Modelling
نویسندگان
چکیده
منابع مشابه
Uncertainty Quantification and Error Estimation in Scramjet Simulation
The numerical prediction of scramjet in-flight performance is a landmark example in which current simulation capability is overwhelmed by abundant uncertainty and error. The aim of this work is to develop a decision-making tool for balancing the available computational resources in order to equally reduce the effects of all sources of uncertainty and error below a confidence threshold. To that ...
متن کاملError Estimation and Uncertainty Quantification for non-linear CFD problems
Modern research and engineering rely on numerical simulations to predict the behaviour of fluids and some derived physical quantities of interest. These predictions are often strewn with errors and uncertainties. Numerical errors come from replacing the real physics with approximate models solved by numerical approximations, while uncertainties are due to insufficient knowledge of some input va...
متن کاملForward and Backward Uncertainty Quantification in Optimization
This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.
متن کاملPerformance Metrics, Error Modeling, and Uncertainty Quantification
A common set of statistical metrics has been used to summarize the performance ofmodels ormeasurements— the most widely used ones being bias, mean square error, and linear correlation coefficient. They assume linear, additive, Gaussian errors, and they are interdependent, incomplete, and incapable of directly quantifying uncertainty. The authors demonstrate that these metrics can be directly de...
متن کاملComparison of Numerical Methods in Uncertainty Quantification
Abstract: This paper presents and compares the results obtained using several methods for Stochastic Computations, used in Uncertainty Quantification. We practically present the methods using a simple ODE model. The focus is on both intrusive and non-intrusive methods, namely the Monte Carlo method, along with methods based on generalized polynomial chaos(gPC) methodology. Moreover, we asses th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2020
ISSN: 2076-3417
DOI: 10.3390/app10051805